Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, ionic zinc (Zn2+) modulates neurotransmitter dynamics in the brain. However, the sub-s effects of transient concentration changes of Zn2+ on neurotransmitter release and uptake are not well understood. To address this lack of knowledge, we have combined the photolysis of the novel caged Zn2+ compound [Zn(DPAdeCageOMe)]+ with fast scan cyclic voltammetry (FSCV) at carbon fiber microelectrodes in live, whole brain preparations from zebrafish (Danio rerio). After treating the brain with [Zn(DPAdeCageOMe)]+, Zn2+ was released by application of light that was gated through a computer-controlled shutter synchronized with the FSCV measurements and delivered through a 1 mm fiber optic cable. We systematically optimized the photocage concentration and light application parameters, including the total duration and light-to-electrical stimulation delay time. While sub-s Zn2+ application with this method inhibited DA reuptake, assessed by the first-order rate constant (k) and half-life (t1/2), it had no effect on the electrically stimulated DA overflow ([DA]STIM). Increasing the photocage concentration and light duration progressively inhibited uptake, with maximal effects occurring at 100 μM and 800 ms, respectively. Furthermore, uptake was inhibited 200 ms after Zn2+ photorelease, but no measurable effect occurred after 800 ms. We expect that application of this method to the zebrafish whole brain and other preparations will help expand the current knowledge of how Zn2+ affects neurotransmitter release/uptake in select neurological disease states.more » « less
-
null (Ed.)Recently, we demonstrated that triphenylacetic acid could be used to seal dye molecules within MOF-5, but guest release required the digestion of the framework by treatment with acid. We prepared the sterically bulky photocapping group [bis-(3-nitro-benzyl)-amino]-(3-nitro-phenyl)-acetic acid ( PC1 ) that can prevent crystal violet dye diffusion from inside MOF-5 until removed by photolysis.more » « less
-
Abstract CTEA (N,N‐bis[2‐(carboxylmethyl)thioethyl]amine) is a mixed donor ligand that has been incorporated into multiple fluorescent sensors such as NiSensor‐1 that was reported to be selective for Ni2+. Other metal ions such as Zn2+do not produce an emission response in aqueous solution. To investigate the coordination chemistry and selectivity of this receptor, we prepared NiCast, a photocage containing the CTEA receptor. Cast photocages undergo a photoreaction that decreases electron density on a metal‐bound aniline nitrogen atom, which shifts the binding equilibrium toward unbound metal ion. The unique selectivity of CTEA was examined by measuring the binding affinity of NiCast and the CTEA receptor for Ni2+, Zn2+, Cd2+and Cu2+under different conditions. In aqueous solution, Ni2+binds more strongly to the aniline nitrogen atom than Cd2+; however, in CH3CN, the change in affinity virtually disappears. The crystal structure of [Cu(CTEA)], which exhibits a Jahn–Teller–distorted square pyramidal structure, was also analyzed to gain more insight into the underlying coordination chemistry. These studies suggest that the fluorescence selectivity of NiSensor‐1 in aqueous solution is due to a stronger interaction between the aniline nitrogen atom and Ni2+compared to other divalent metal ions except Cu2+.more » « less
An official website of the United States government
